Developing Peptide MRM-based Assays for Cardiovascular Biomarker Proteins in Plasma Using a Hybrid Triple Quadrupole Linear Ion Trap Mass Spectrometer

> N. Leigh Anderson¹, Christie L Hunter², Gerald W. Becker³, and Andrew Breite³

> > ¹the Plasma Proteome Institute, DC ²Applied Biosystems, CA ³Roche Applied Science, IN

ASMS June 2005 San Antonio

(c) Plasma Proteome Institute

Plasma Proteome Discovery Platforms Have Limited Sensitivity and Lack Comprehensiveness

Role for Candidate-Based Proteomics

- Multiplexed specific assays (candidate approach) can address three important drawbacks of biomarker discovery platforms for the middle pipeline stage (verification/validation):
 - Throughput
 - Sensitivity
 - Coverage (range of analytes)
- Candidate-based approaches forego most of the potential for discovery of new biomarkers, but retain some ability to "discover" optimal multi-analyte panels.
- Our purpose is to develop an MS-based candidate approach for high-throughput biomarker verification/validation in human plasma and serum

Published List of 177 CVD Candidates

Candidate-Based Proteomics in the Search for Biomarkers of Cardiovascular Disease,

Leigh Anderson, J. Physiol 563.1, 23-60 (2005)

	Name	Accession	Normal concentration (pg mi ⁻¹)	Source for concentration	Reason	Coagu- lation	Lipo- protein	Acuti Phase
1	activin A	P08476	6.0E +02	(Eldar-Geva <i>et al.</i> 2001)	Released by heparin from vascular endothelium (Phillips et al. 2000)			
2	adiponectin (ADPN)	Q15848	4.8E +06	(Mallamaci et al. 2002)	Higher levels in essential hypertensives (Mallamaci et al. 2002)			
3	albumin	P02768	4,1E +10	(Specialty Laboratories, 2001)	Negative acute phase reactant, lower levels associated with increased risk of cardiovascular mortality (Shaper <i>et al.</i> 2004)			+
	aldolase C	P09972	4.0E +03	(Asaka <i>et al.</i> 1990)	A more specific and sensitive marker of cerebrovascular diseases than aldolase A (Asaka et al. 1990)			
5	alpha 2 antiplasmin (alpha 2 AP)	P08697	7.0E +07	Progen test insert	An important regulator of the fibrinolytic system	+		
6	alpha 2 macroglobulin (alpha 2 м)	P01023	1.8E +09	(Specialty Laboratories, 2001)	Major plasma protease inhibitor			
7	alpha(1)- anti- chymotrypsin (ACT)	P01011	4.2E +07	(Putnam, 1975)	Major plasma protease inhibitor			+

In Silico Selection of MRM Peptides

- One or more tryptic peptides used as quantitative surrogates for the protein ("monitor" peptide concept)
- "Inside every bad protein there is at least one good peptide"
- Began with 29,155 peptides from "mature" protein forms (21,609 unique)
- Downloaded SP annotation & computed parameters
- Looked for occurrence in Pounds exptl data set
- Ranked peptides on composite index of desirable properties

Term	Explanation				
asn * -2 +	Susceptible to deamidation, which would change the mass of a pe				
	containing it.				
gin * -2 +					
met * -3 +	Susceptible to oxidation, which would change the mass of a pepti containing it.				
trp*-3+					
cys * -10 +	a				
pro * 5 +	Produces enhanced peptide structure and can improve immunoger				
kp * 2 +	Results in an additional positive charge in a peptide				
rp * 2 +	*				
dp * 5 +	Introduces a site of efficient gas-phase fragmentation and improve detection				
chymo sites * -3 +	Peptide more likely to be degraded by chymotryptic activity				
occurrences_in_protein * 2 +	Multiply occurring peptide would give better detection				
carbohyd * -50 +	Glycosylation of a peptide changes its mass and decreases MS de				
mod_res * -50 +	Any documented chemical modification of a residue in the peptide changes its mass				
conflicts * -20 +	Any potential sequence errors in the peptide decrease its usefulne MS analyte				
variants * -10 +	Any genetic variants in the peptide decrease its usefulness as an analyte by restricting its use to a subset of patients				
sign(calc_mass-800)*100 +	Applies a negative value to mass less than 800				
sign(1800-calc_mass)*100	Applies a negative value to mass greater than 2,000				
sign(detect - 0.0001) * 10 + detect * 20 +	Gives 10 points for detection in the Pounds experimental MS/MS d 30 if the peptide is the most frequently detected for its protein (dete aforementioned index of detectability)				

Initial Selection of 30 Targets

Protein	peptide_compound_accession	[mol_per_m	peptide_sequence	ocurrunuos_		A II O II P	mod_res	carbohyd	
Apolipoprotein A-I	P02647 25 267 trypsin 32 196 206	4.8E+07	ATEHLSTLSEK	1	1	0	0	0	
Alpha-1-acid glycoprotein 1	P02763 19 201 trypsin 12 121 135	3.2E+07	NWGLSVYADKPETTK	1	0	0	0	0	
Haptoglobin beta chain	P00737 162 406 trypsin 1 1 9	2.3E+07	ILGGHLDAK	1	0	0	0	0	
Fibrinogen gamma chain	P02679 27 453 trypsin 17 141 151	1.5E+07	DTVQIHDITGK	1	0	0	0	0	
Fibrinogen alpha chain	P02671 36 640 trypsin 56 433 441	1.5E+07	TVIGPDGHK	2	0	0	0	0	
Fibrinogen beta chain	P02675 45 491 trypsin 31 257 269	1.5E+07	QGFGNVATNTDGK	1	0	0	0	0	
Alpha-1-antichymotrypsin	P01011 24 423 trypsin 31 284 292	8.8E+06	EIGELYLPK	1	0	0	0	0	
Complement C3	P01024 23 1663 trypsin 105 883 891	7.1E+06	TGLQEVEVK	4	0	0	0	0	
Antithrombin-III	P01008 33 464 trypsin 48 360 370	4.1E+06	DDLYVSDAFHK	1	0	0	0	0	
Ceruloplasmin	P00450 20 1065 trypsin 17 159 168	2.3E+06	IYHSHIDAPK	1	0	0	0	0	
Prothrombin	P00734 44 622 trypsin 46 444 455	1.5E+06	ETAASLLQAGYK	2	0	0	1	0	
Complement C4 gamma chain	P01028 1454 1744 trypsin 26 194 202	1.4E+06	ITQVLHFTK	1	0	0	1	0	
Apolipoprotein B-100	P04114_28_4563_trypsin_416_3764_3772	1.4E+06	FPEVDVLTK	1	0	0	0	0	
Alpha-2-antiplasmin	P08697 40 491 trypsin 2 13 25	1.4E+06	LGNQEPGGQTALK	1	0	0	0	0	
Plasminogen	P00747 20 810 trypsin 73 652 661	1.2E+06	LSSPAVITDK	2	0	0	0	0	
Apolipoprotein E	P02649 19 317 trypsin 46 275 282	1.2E+06	QWAGLVEK	1	0	0	0	0	
Coagulation factor XIIa heavy chain	P00748_20_372_trypsin_1_1_8	4.6E+05	IPPWEAPK	1	0	0	0	0	
Apolipoprotein(a)	P08519 20 4548 trypsin 249 4385 4398	2.8E+05	LFLEPTQADIALLK	1	0	0	0	0	
Coagulation factor X	P00742_41_488_trypsin_56_436_448	2.0E+05	SHAPEVITSSPLK	3	0	0	0	0	
Adiponectin	Q15848 19 244 trypsin 13 117 131	2.0E+05	IFYNQQNHYDGSTGK	1	0	0	0	0	
Beta-2-glycoprotein I	P02749_20_345_trypsin_34_309_317	1.5E+05	EHSSLAFWK	1	1	0	0	0	
Coagulation factor IX	P00740 47 461 trypsin 16 135 142	1.1E+05	VSVSQTSK	2	0	0	0	0	
C-reactive protein	P02741_19_224_trypsin_4_14_23	1.0E+05	ESDTSYVSLK	1	0	0	0	0	
Vitamin K-dependent protein C	P04070 43 461 trypsin 32 234 241	7.8E+04	WELDLDIK	2	1	0	0	0	
Coagulation factor XIII A chain	P00488_38_731_trypsin_62_587_598	6.6E+04	STVLTIPEIIIK	1	0	0	0	0	
Coagulation factor XIII B chain	P05160 21 661 trypsin 25 198 208	6.6E+04	LIENGYFHPVK	1	0	0	0	0	
Cholesteryl ester transfer protein	P11597_18_493_trypsin_5_38_47	3.6E+04	ASYPDITGEK	2	0	0	0	0	
Coagulation factor V	P12259 29 2224 trypsin 92 898 907	2.7E+04	DPPSDLLLLK	1	0	0	0	0	
Angiotensinogen	P01019_34_485_trypsin_6_50_61	2.0E+04	ALQDQLVLVAAK	1	0	0	0	0	
L-selectin	P14151 39 372 trypsin 6 33 40	1.8E+04	AEIEYLEK	1	0	0	0	0	
						1	р	וי	

Additional MRM's Developed Based on Experimental Data (35 Additional Proteins)

- Beavis GPM website (historical LC-MS/MS data on plasma)
- Classical IDA analysis of plasma digest
- MRM-triggered IDA to find additional proteins on CVD panel that were not found by normal IDA

Final Method

- 137 MRM's
- 17 stable isotope peptides as IS
- 52 proteins monitored
- 60 peptides, two transitions each
- Includes 40 cardiovascular markers

Analytical Platform

- ABI/Sciex 4000 QTRAP
- 75u LC Packings C18 column, 250nl/min

Beavis' GPM Useful in MRM Design

gpmDB current contains **507** entries for *ENSP00000264613* Your result is compared against the 20 best coverage patterns.

MRM-Triggered IDA to Develop Peptide MRM Transitions

(workflow now called MIDAS: MRM-Initiated Detection and Sequencing)

Example Evidence for Ceruloplasmin (8 peptides found)

MRM's Selected for polySIS CVD_1 Peptides

			Unlabeled		Labe		
Order	Protein	Peptide	Q1	Q3	Q1	Q3	CE
1	Apolipoprotein A-I	ATEHLSTLSEK	405.88	664.35	408.54	672.35	25
2	Alpha-1-acid glycoprotein 1	NWGLSVYADKPETTK	570.29	1052.53	575.61	1068.53	35
3	Haptoglobin beta chain	ILGGHLDAK	462.26	697.36	466.26	705.36	31
4	Fibrinogen gamma chain	DTVQIHDITGK	409.54	670.35	412.21	678.35	23
5	Fibrinogen alpha chain	TVIGPDGHK	462.25	723.38	466.24	731.38	25
6	Fibrinogen beta chain	QGFGNVATNTDGK	654.80	706.34	658.80	714.34	30
7	Alpha-1-antichymotrypsin	EIGELYLPK	531.29	819.46	535.29	827.46	26
8	Complement C3	TGLQEVEVK	501.77	731.39	505.77	739.39	25
9	Antithrombin-III	DDLYVSDAFHK	437.21	803.40	439.87	811.40	27
10	Ceruloplasmin	IYHSHIDAPK	394.20	767.40	396.90	775.40	25
11	Prothrombin	ETAASLLQAGYK	626.33	879.49	630.33	887.49	32
12	Complement C4 gamma chain	ITQVLHFTK	362.88	645.37	365.55	653.37	30
13	Apolipoprotein B-100	FPEVDVLTK	524.28	803.45	528.28	811.45	25
14	Alpha-2-antiplasmin	LGNQEPGGQTALK	656.84	771.44	660.84	779.44	40
15	Plasminogen	LSSPAVITDK	515.79	743.43	519.79	751.43	25
16	Apolipoprotein E	QWAGLVEK	465.75	616.37	469.75	624.37	28
17	Coagulation factor XIIa heavy chain	IPPWEAPK	469.25	727.38	473.25	735.38	27
18	Apolipoprotein(a)	LFLEPTQADIALLK	786.45	1069.63	790.45	1077.63	33
19	Coagulation factor X	SHAPEVITSSPLK	455.92	632.36	458.58	640.36	28
20	Adiponectin	IFYNQQNHYDGSTGK	591.27	727.33	593.94	735.33	30
21	Beta-2-glycoprotein I	EHSSLAFWK	552.77	838.45	556.77	846.45	23
22	Coagulation factor IX	VSVSQTSK	418.22	736.38	422.22	744.38	24
23	C-reactive protein	ESDTSYVSLK	564.77	696.39	568.77	704.39	29
24	Vitamin K-dependent protein C	WELDLDIK	516.27	716.42	520.27	724.42	25
25	Coagulation factor XIII A chain	STVLTIPEIIIK	663.91	712.46	667.91	720.46	26
26	Coagulation factor XIII B chain	LIENGYFHPVK	439.57	847.45	442.23	855.45	25
27	Cholesteryl ester transfer protein	ASYPDITGEK	540.76	759.39	544.76	767.39	30
28	Coagulation factor V	DPPSDLLLLK	555.82	898.56	559.82	906.56	30
29	Angiotensinogen	ALQDQLVLVAAK	634.88	956.58	638.88	964.58	34
30	L-selectin	AEIEYLEK	497.75	794.43	501.75	802.43	22

Efficient Production of Stable Isotopelabeled Standards (SIS) as polySIS*

Absolute Protein Quantitation in Relation to polySIS* Peptide Standards

Subtraction of Top 6 Proteins (albumin, IgG, IgA, haptoglobin, transferrin and antitrypsin) Using Agilent MARS Column

Immunosubtraction of Top 6 Proteins Yields 5-9-fold Improved S/N

Fibronectin SYTITGLQPGTDYK 1543.8

Fibronectin, a protein of much lower normal abundance $(1.4\mu g/ml)$ could be measured using peptide SYTITGLQPGTDYK (selected *in silico*) using the transition 772.4/680.3 with S/N of 170, suggesting an LLOQ of ~100ng/ml.

Current MRM Method

Designed vs "Random" MRM's Occupancy of Plasma MRM Space Is Low

Reproducibility of MRM Panel in Depleted Plasma

Dynamic Range of Current Method Detection of L-selectin

SISCAPA*: A Method Combining The Specificity of MS Detection with Sensitivity of Antibody Capture

Strategies for Progressive Increases in Sensitivity of LC-MS Peptide Quantitation

Our approach generates a coherent, layered series of methods based on a single analytical platform (TQMS), with an explicit sensitivity vs cost tradeoff

Conclusions

- Large numbers of candidate biomarkers already exist to jumpstart verification/validation, and from which improved panels could be constructed
- MRM assays of monitor peptides offer a potentially rapid path to verification/validation with less cost and effort than sandwich immunoassays
- · Optimal MRM design makes use of both in silico and experimental data
- Current MRM's appear able to access the top 5 logs of plasma protein abundance, and cover everything visible on a plasma 2-D gel
- Novel paths to creation of internal standards (e.g., polySIS proteins) can facilitate assays development
- Marker panel development and validation in large sample sets (e.g., epidemiological studies) now appears feasible

Acknowledgements

SISCAPA Experiments
Bob Olafson, Derryl Hardy, UVIC-Genome B.C. Proteomics Centre
Terry Pearson, Lee Haines, Department of Biochemistry and Microbiology, University of Victoria, B.C. Canada
John Rush, Cell Signaling
Plasma Proteome Database
Malu Polanski (PPI)
Richard Fagan, Anna Lobley, Inpharmatica Ltd., London
Rembert Pieper, Tina Gatlin, present address: The Institute for Genomic Research
Radhakrishna S. Tirumalai, Timothy D. Veenstra, Mass Spectrometry Center, U. S. National Cancer Institute
Joshua N. Adkins, Joel G. Pounds, Biological Sciences Department, Pacific Northwest National polySIS labeled peptide standards Jerry Becker, Andrew Breite, Roche Protein Expression Group, Indianapolis MRM Assay Development Christie Hunter, Applied Biosystems, Foster City MALDI TOF/TOF Glen Hortin, Alan Remaley, Steve Drake, Gerry Hoehn, Clinical Chemistry Laboratory, NIH Clinical Center Graphics Arkitek Studios, Seattle

www.plasmaproteome.org PPI

Laboratory

Recent Relevant Papers

- The human plasma proteome: History, character, and diagnostic prospects. Anderson, N.L. and Anderson, N.G., Molecular and Cellular Proteomics, 1.11, 845-867 (2002)
- The human serum proteome: Display of nearly 3700 chromatographically separated protein spots on twodimensional electrophoresis gels and identification of 325 distinct proteins. Pieper, R., et al Proteomics 3(7): 1345-64. (2003).
- Multi-component immunoaffinity subtraction chromatography: An innovative step towards a comprehensive survey of the human plasma proteome. Pieper, R., Su, Q., Gatlin, C. L., Huang, S. T., Anderson, N. L., Steiner, S. Proteomics 3(4): 422-32 (2003).
- Therapeutic potential of the plasma proteome. Lathrop, J.T., Anderson, N.L., Anderson, N.G., and Hammond, D.J. Current Opinion in Mol. Therapeutics 5:250-257 (2003).
- Mass Spectrometric Quantitation of Peptides and Proteins Using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). Anderson, N.L., Anderson, N.G., Haines, L.R., Hardie, D.B., Olafson, R.W., and Pearson, T.W. Journal of Proteome Research, 3: 235-44 (2004).
- NHLBI Clinical Proteomics Working Group Report. Granger, C.B., Van Eyk, J.E., Mockrin, S.C., and Anderson, N.L., on behalf of the Working Group Members. Circulation 109: 1697-703 (2004).
- Candidate-Based Proteomics in the Search for Biomarkers of Cardiovascular Disease, Leigh Anderson, J. Physiol., 563.1, 23-60 (2005)

